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Outline

• Introduction

• Air-sea CO2 fluxes or the problem of separating the anthropogenic from the

natural component

• The importance of the ocean as a sink for ant. CO2

• How do we obtain fluxes from storage? An inverse approach

• On the relationship between transient tracers and anthropogenic CO2

• Summary and outlook



Globally integrated flux into the ocean: 2.2 PgC yr−1



.

Pre-industrial CO2 fluxes

Anthropogenic CO2 fluxes
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DISSOLVED INORGANIC CARBON (sDIC@35) [µmol/kg]
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Determination of the anthropogenic CO2 signal

We follow the method of Gruber et al. [1996] to separate the anthropogenic CO2

signal from the large natural variability in oceanic DIC. This method requires the

removal of

(i) the change in dissolved inorganic carbon (C) that incurred since the water left

the surface ocean due to remineralization of organic matter and dissolution of

CaCO3 (∆Cbio), and

(ii) of a concentration Csfc-pi that reflects the DIC content a water parcel had at

the outcrop in pre-industrial times

Thus,

∆Cant = C −∆Cbio − Csfc-pi

• Assumption:

Natural carbon cycle has remained in steady-state.



ANTHROPOGENIC CO2 [µmol/kg]
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Atlantic (Gruber, 1998)
Indian (Sabine et al., 1999)
Pacific (Sabine et al., 2002)
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large storage in subtropical gyres!



Anthropogenic CO2 Inventories during WOCE era

Atlantic Pacific Indian Global

Inventory† Inventory‡ Inventory? Inventory

[Pg C] [Pg C] [Pg C] [Pg C]

Southern Hemisphere 17 28 17 62 (56%)

Northern Hemisphere 28 17 3 48 (44%)

Total 45 (41%) 45 (41%) 20 (18%) 110

† Lee et al. (in prep.)
‡ Sabine et al. (2002)
? Sabine et al. (1999)



Anthropogenic CO2 Budget (1800 to 1990)

CO2 sources Gt C

(1) Emissions from fossil fuel and cement production a 230

(2) Net emissions from changes in land-use b 110

(3) Total anthropogenic CO2 emissions = (1) + (2) 340

CO2 partitioning amongst reservoirs Gt C

(4) Storage in the atmosphere c 145

(5) Ocean uptake d 107

(6) Terrestrial sinks = [(1)+(2)]-[(4)+(5)] 82

a: From Marland and Boden [1997]

b: From Houghton [1997]

c: Calculated from change in atmospheric pCO2

d: Based on estimates of Sabine et al. [1999], Sabine et al. [2002] and Lee et al. (in prep.), adjusted to 1990



Principle of Oceanic Inversion

• The ocean surface is partitioned into n regions (n=13).
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Principle of Oceanic Inversion (Cont.)

• Basis functions:

In a OGCM, time-varying fluxes of dye tracers (Φ(t)) of the form

~Φ(t) = ~Φ(t = 0) ∗ (pCO2(t)− pCO2(t = 0))

are imposed in each of the n = 13 regions, and the model is run forward in

time.
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Principle of Oceanic Inversion (Cont.)

• Basis functions:

In a OGCM, time-varying fluxes of dye tracers (Φ(t)) of the form

~Φ(t) = ~Φ(t = 0) ∗ (pCO2(t)− pCO2(t = 0))

are imposed in each of the n = 13 regions, and the model is run forward in

time.

• By sampling the modeled distribution at the observations stations, we obtain

a transport matrix AOGCM that relates the fluxes to the distribution,

~χOGCM = AOGCM
~Φ.

• Modeled distributions are then substituted with observed ones and the matrix

A is inverted to get an estimate of the surface fluxes (~Φest) :

~Φest = A−1
OGCM ~χobs.



Anthropogenic CO2 Flux for 1990: 1.8 PgC/yr Gloor et al. (in press)

Gruber et al. (in prep.)
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preliminary results: Gruber et al. [in prep.]
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OCMIP-2: ANTHROPOGENIC CO2 FLUXES, 

                                                              STORAGE, AND TRANSPORT

J. Orr and OCMIP-2 (pers. comm)



Uptake Rate (PgC/yr)

Model 1980-1989 1990-1999 (S650)        1765-1990


PRINCE 1.65 1.98 102
IPSL.DM1(HOR) 1.67 1.98
LLNL 1.78 2.08 108
CSIRO 1.78 2.11 108
MIT 1.91 2.29
NCAR 1.93 2.30 115
PRINC2 1.93 2.32
IPSL (GM) 1.97 2.36
MPIM 2.01 2.43 124
SOC 2.01 2.39 123
IPSL.DM1(GM) 2.03 2.43 125
IGCR 2.05 2.47 127
PIUB 2.11 2.52 135
AWI 2.14 2.58 127
NERSC 2.38 2.84
UL 2.51 3.04

OCMIP-2: ANTHROPOGENIC CO2 UPTAKE

MEAN

RANGE 1.65-2.51 1.98-3.04 102-146

1.99+/- 0.23 2.38+/- 0.29 121+/- 12

J. Orr and OCMIP-2 (pers.comm.)

Inventory (Pg)

117

146

"DATA RECONSTRUCTION*" 107 +/- 20

* Sabine et al. (pers. comm)



OCMIP-2: FUTURE ANTHROPOGENIC CO2 UPTAKE

J. Orr and OCMIP-2 (pers. comm)

RANGE FOR 1990s: 

    +/- 22% 


IS92a: RANGE FOR 2100: 

    +/- 33% 


S650: RANGE FOR 2100: 

    +/- 30% 
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Observational estimate: 

        J. Bullister, pers. comm.

OCMIP-2: ANTHROPOGENIC CO2 FLUX 

                                             VERSUS CFC-11 INVENTORY 

J. Orr and OCMIP-2 (pers.comm.)
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Summary

• Reconstructions of the oceanic inventory of anthropogenic CO2 as well as ocean

models indidate that the ocean has been the the largest sink for anthropogenic

CO2 during the anthropocene (taking up about a third of the total anthro-

pogenic CO2 emissions).

• We find on the basis of our inversion that the Southern Ocean south of 36◦S

constitutes one of the most important sink regions, but most of this anthro-

pogenic CO2 is transported northward and not stored there.

• Models show a similar pattern, but they differ widely in the magnitude of their

Southern Ocean uptake. This has large implications for the future uptake of

anthropogenic CO2 even in the absence of climate change.

• Transient and anthropogenic tracers are very helpful in better constraining the

oceanic sink for ant. CO2.
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Outlook and challenges

• While we have made great advances in our understanding of the role of the

oceans as a sink for anthropogenic CO2, there are a number of outstanding

and challenging issues:

– The magnitude and role of “natural” variability

– Response to climate change and other ant. perturbations

• Both require a detailed understanding not only of the anthropogenic CO2 per-

turbation, but also of the natural carbon cycle, i.e. the interaction of biological

and solubility pumps.

• These problems need to be addressed by a combination of long-term monitoring

of the ocean and the development of a hierarchy of diagnostic and prognostic

models that are based on a mechanistic understanding of the relevant processes.
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